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Effective velocity created by a point vortex in two-dimensional hydrodynamics
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We complete previous investigations on the statistics of velocity fluctuations arising from a random distri-
bution of point vortices in two-dimensional hydrodynamics. We show that, in a statistical sense, the velocity
created by a point vortex is shielded by cooperative effects on a distaree 2 the intervortex separation.

For R> A, the “effective” velocity decays aR 2 instead of the ordinary laR ! recovered foR<A. These
results are similar to those obtained by Ageky&wov. Astron.5, 809 (1962] in his investigations on the
fluctuations of the gravitational field. They give further support to our previous observation that the statistics of
velocity fluctuations arémarginally) dominated by the contribution of the nearest neighbor.
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Recently, several papefg,9] have derived the form of
the velocity probability distribution functiotPDF) created Verit(N) ~
by a random distribution of point vortices in two-
dimensional hydrodynamics. Technically, the velodityoc-
curing at the cente® of a circular domain of radiuR is the
sum of the velocitiesb; (i=1,...N) produced by theN
vortices
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This distribution is obtained in the “thermodynamical” limit
N,R— + o with n=N/7R? finite (we have assumed for sim-
plicity that the vortices are uniformly distributed on average;
see Refs[2,8,9 for a generalization of these results to the
N case of an inhomogeneous medjum fact, this limit is not
sz o D—— RN 1) well defined and the velocity PDF is “polluted” by logarith-

=" ! mic corrections. Therefore, in Eq&), (3), and(4) we must
consider thatN— +, but not InN. This is appropriate to
physical situations in which the typical number of point vor-
tices does not exceed 4.G8ince this distribution is interme-
diate between Gaussian andvydaws we proposed to call it
a “marginal Gaussian distribution[7]. In the (formal) limit

wherer; denotes the position of thigh point vortex relative
to the point under consideration and, by definition, is the
vectorr; rotated by+ 7/2 (we have assumed for simplicity
that all the vortices have the same circulatign Therefore,

if the vortices are randomly distributed over the entire do—In N—+e, the tail is rejected to infinity and the limit distri-
main, the problem at hand amounts to finding the distributio bution is GaussiafiL0,11]. However, the convergence is very

. - ! Tlow so that, in physical situations, the algebraic tail is
of a sum of random variables. The difficulty is that the vark ciearly visible[1-3).

ance of the individual velocitie¢d~) diverges logarithmi- From the distributior(2), (3), and (4) we can easily cal-

cally so that the central limit theorem is not directly appli- culate the average value of the modulus of the velocity. To
cable. In early works, Jimeng], Min et al.[2], and Weiss leading order in I\, we find

et al. [3] determined the velocity PDF by applying a gener-
alization of the central limit theorem due to Felld0] and
Ibragimov and Linnik[11]. More recently, this problem was (|V|>=(
reconsidered by Chavanis and Sj&7] and Chavanig9]

who extended the methods introduced by Chandrasekhar and

von Neumanr12] in their investigations on the fluctuations It should be noted that the moduli of the velocity avet
of the gravitational field. In the stellar context, the limit dis- statistically additive in the sense that

tribution is a particular Ley law, called the Holtzmark dis-
tribution. In the vortex context, the velocity PDF is given by

©)

2 1/2
ny
Eln N)

(VD= 2, (@il). (©)
4

4
— _ 2
Wv) ”?’ZmNeXp( nyzlnNV

[VSVcrit(N)]a

This is clear at first sight since the right-hand side of &.
(2)  divergeslinearly with the size of the domain. It is therefore
of interest to calculate the average contribufaniV|(R)) to

ny> the modulus of the velocity exerted by vortices located in the
W(V)~ >a [V=V,ii(N)], 3 annulus of radiufk and thicknesaR. A similar quantity was
AmNV calculated by Agekyahl3] in the astrophysical contexsee
also Kandrup[14] for a generalization of his results to an
where inhomogenous mediumand it is possible to extend his
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method to the case of point vortices. As we shall see, it is
possible to derive an explicit expression for this quantity in

terms of Bessel functions.
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Following Agekyan’s method, we proceed in three steps.

We first determine the average veloc{ty/* (R)|) due to all
vortices, except those that lie in the annulMR, assuming

that there ardl vortices insideR. Then we average this quan-
tity with respect toN. Finally, we subtract this averaged

quantity from the average velocityV|) due to all vortices.

Our presentation closely follows the one adopted by Kan-
drup [14] in his review on the stochastic gravitational fluc-

tuations.
Suppose there ag vortices insideR andN; betweenR

with

N
* _ R 1 ip-®y2
AN(p)= ¥ o_Rze der
=071

Rl )
Xexp{—nj (1—e"’"1’)d2r]. (14)
[r|=R+AR

Let P(N) denote the probability of findingyl vortices in the

+AR and R;. The probability that these vortices exert a disk of radiusR. Since the vortices are randomly distributed
velocity V* in O can be obtained by applying Markov's with a uniform distribution in averagd®(N) is given by the

method outlined in Refl6]. We start from the formula

WN,Nl(V*):f H T(ri)dzri5<v_2k ‘Dk), (7)

Poisson distribution

—nmR2

P(N)=(n7RO) 5,

(15

where 7(r;)d?r; governs the probability of occurence of the yhere n is the average density of vortices. Averaging the

ith point vortex at positiom; , and we express th&function
in terms of its Fourier transform

5(x)= ! f e '7*d?p. (8)
(2m)?
Then,
Wi, (V) =~ [ A (ple 0 Ve? ©)
N,N; R NN, P P
with

(o= [ TL rrodree ™o ao

Leti=1,... N label the vortices in the disk of radiUs[re-
gion ()] andi=N+1,... N; label the vortices betweeR
+ AR andR; [region(Il)]. If the vortices are uniformly dis-
tributed in average, them ;= 1/7R? and Ty = m| Ri
—(R+AR)?]. We can write therefore,

R ] N
AN, (p)= j T(|)e'p'q)d2r
T [r|=0
Rt a2 |t
X 1_Lr|_R+ART(||)(1_ep )dl’ y
(11)
where
2L

In the limit R;,N;—2 with n=N, /wR? fixed (and treat-
ing InN; as a constantwe get

quantity (14) with respect to the Poisson distributigh5),
we obtain

A*<p>=§ P(N)A%(p)

Ry )
=exp{—nj (1—e""‘1’)d2r}
[r|[=R+AR

+ oo

3 1 fR ip @2
— ne'? ®der
N=0 N!( |r|=0

R+AR _
=e”C(”)exp[nf| (1—e""‘1’)d2r], (16)
rI=R

N
X e*nﬂTRz

where

Ry _
C(p)=f|r|=0(1—e"’"l’)d2r. (17)

The functionC(p) has been calculated in Rg6]. To sim-
plify the integral appearing in Eq16), we find it convenient
to take® as a variable of integration instead ofsee Ref.
[6] for more detail. Transforming to polar coordinates, car-
rying out the angular integration, and taking the limMiR
—0, we obtain

A*(p)=e ") 1+27nRAR

P
1_JO<27TR>

where Jg is the Bessel function of zeroth order. Equation
(13), without the subscriptN, and Eq.(18) determine the
distribution of the velocity fluctuations occuring @ due to

all the vortices except those located betw&and R+ AR.

If we denote by

} . (18)

ANVRDH=AVH =V, (19)
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the average velocity due to the vortices located in the annuae get
lus of radiusR and thicknesAR, we have

. (A|V(R)|)=2wnRARj+dep. (29)
<A|V(R)|>:_Ff e 'PVe "2 7nRAR o P
T

Straightforward integrations by part lead to the equivalent

B Yp o expression
x| 1 JO(_ZWR> Vdvdp. (20
. . . *=g(p)
Transforming to polar coordinates and carrying out the an- (A|V(R)|>=2wnRARf —dp. (30)
gular integrations, we can rewrite the foregoing expression in o p
the form Therefore, the average value of the velocity created by the
) point vortices located in the annulus betweBnand R
<A|V(R)|)=—27-rnRARf vdv +AR s given by
0
e +°° P\ | \—ncip 9P
xfo pVIo(pV)g(p)dp, (21) (AIV(R)[)=2mnRAR . |17l R] e —-
(31
with

The exact expression fo€(p), calculated in Ref[6], is

relatively complicated. However, for our purpose, it is suffi-
P ” —nC(p),

Under this form, it is not possible to interchange the order of
integrations. However, using the identity

(22) cient to consider its approximate expression

72
- 2
C(p)= 167_r|n N1ip~. (32

With the change of variables= yp/27R, we can rewrite Eq.

d .
XJo(x) = g [x3 (0], (29 ~ (3D inthe form
. . . “+ oo
and integrating by parts, we obtain <A|V(R)|)=n7ARfO [1—Jo(X)]
o o n dx
<A|V(R)|)=27TnRARj0 deO VJ,(pV)h(p)dp, xex;{—ZTrRzm N1X2)—2. (33
(24) X
with It turns out that this integral can be expressed in terms of
modified Bessel functions. Indeed,
h(p)=pg'(p). (25) 112

1/ 7
= — N —1/8a
Integrating by parts one more time with the identity (A[V(R)) nyARl mat 4( a) €

1
Jo(X)=—J1(x), (26) X| (1+4a)l, g)+|1 3a ] (34
we find with
+ o +
- ! n
(A[V(R)[) ZW”RARL deO Jo(pV)N'(p)dp. aEZwRZIn N, . (35)
(27)
It is now possible to interchange the order of integrations.':Or R—0, this expression reduces to
Using the identity
(AIV(R)[)=n7AR. (36)
J’MJo(x)dx: 1, (29) This formula would be expected to be general if the moduli
0 of the velocity were additive. Indeed, in that case
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<A|v|>2=n2wRARZWLR=nyAR. 37)

However, the moduli of the velocity areot additive and Eq.
(36) does not hold for large values d®. Indeed, forR

— + 00,
n
In N4

It is seen that “cooperative” effects modify the expression of

Y

4

1/2AR

(AIV(R)= 5 (39

the average velocity that we would expect on the basis of

naive arguments. In view of the asymptotic behavi86)

and (38), a simple approximate expression for the average

velocity is given by

AN V2 @
1+R/IA’
whereA is a characteristic length defined by
1
(40)

A=—"T—.
(16nInN;)?

This formula shows that the velocity is “shielded” on a
typical distance~ A, the intervortex distance. Therefore, ev-
erything happenss if the velocity were additive but that
each vortex produced an “effective” velocity

0% 1

Vel RITRIA" (4D

For R> A, the “effective” velocity decays likeR™? instead

of the usual behavioR ! recovered foR<A (see Fig. 1
These results confirm our previous observafi6y®] that

the velocity fluctuations occuring i® are dominated by the
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FIG. 1. Plot of the effective velocity normalized by the physical
velocity V= y/27R versus the normalized distanB2A. The “ef-
fective” velocity is defined byV.;=(A|V(R)|)/2mnRAR. The
solid curve corresponds to the exact formula deduced fron{3.
and the dashed line to the approximate formudld).

bor (at a typical distance-n~*? from the point under con-
sideration V,, ,~ yn*?is of the same order, up to a logarith-
mic factor, as the contribution of the rest of the systéma
sensewe can say that the velocity#2) is dominated by the
contribution of the nearest neighbor and that collective ef-
fects are responsible for logarithmic corrections. As de-
scribed in Ref.[6], this particular circumstance arises be-
cause we are just at the separation between Gaussian and
Lévy laws.

The results obtained in this paper and in R¢is-8] can
have applications in the context of decaying two-dimensional
turbulence when the flow becomes dominated by a large
number of coherent vortices. They have been used explicitly
by Sire and Chavani§l5] to build up effective two- and

contribution of the nearest neighbor. In fact, this dominanceéhree-body dynamics of vortices subjected to the “noise”
is marginal since the average velocity diverges logarithmiinduced by the rest of the system. They are also of great

cally with the size of the domain

+ n'y
<|V|>:fo TrrA R yn*(InRy) 2. (42

Therefore, equal logarithmic intervals contribute equally to
the velocity. In other words, the contribution from vortices
betweenrR andR/2, R/2, andR/4 and so forth are of equal

importance to build up a rational kinetic theory of point vor-
tices in two-dimensional2D) hydrodynamicg9]. On a for-

mal point of view, they complete the analogy between 2D
vortices and stellar systems investigated in R¢16,17.
They can also be relevant for other fields of physics such as
non-neutral plasmas under a strong magnetic figldand
parallel straight dislocation systerfis3].

| acknowledge interesting discussions with C. Sire on this

importance. Therefore, the contribution of the nearest neightopic.
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