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Effective velocity created by a point vortex in two-dimensional hydrodynamics

Pierre-Henri Chavanis
Laboratoire de Physique Quantique (UMR 5626 du CNRS), Universite´ Paul Sabatier, F-31062 Toulouse Cedex 4, France

~Received 20 September 2001; published 2 May 2002!

We complete previous investigations on the statistics of velocity fluctuations arising from a random distri-
bution of point vortices in two-dimensional hydrodynamics. We show that, in a statistical sense, the velocity
created by a point vortex is shielded by cooperative effects on a distanceL;n21/2, the intervortex separation.
For R@L, the ‘‘effective’’ velocity decays asR22 instead of the ordinary lawR21 recovered forR!L. These
results are similar to those obtained by Agekyan@Sov. Astron.5, 809 ~1962!# in his investigations on the
fluctuations of the gravitational field. They give further support to our previous observation that the statistics of
velocity fluctuations are~marginally! dominated by the contribution of the nearest neighbor.
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Recently, several papers@1,9# have derived the form o
the velocity probability distribution function~PDF! created
by a random distribution of point vortices in two
dimensional hydrodynamics. Technically, the velocityV oc-
curing at the centerO of a circular domain of radiusR is the
sum of the velocitiesFi ( i 51, . . . ,N) produced by theN
vortices

V5(
i 51

N

Fi , Fi52
g

2p

r' i

r i
2

, ~1!

wherer i denotes the position of thei th point vortex relative
to the point under consideration and, by definition,r' i is the
vector r i rotated by1p/2 ~we have assumed for simplicit
that all the vortices have the same circulationg). Therefore,
if the vortices are randomly distributed over the entire d
main, the problem at hand amounts to finding the distribut
of a sum of random variables. The difficulty is that the va
ance of the individual velocitieŝF2& diverges logarithmi-
cally so that the central limit theorem is not directly app
cable. In early works, Jimenez@1#, Min et al. @2#, and Weiss
et al. @3# determined the velocity PDF by applying a gene
alization of the central limit theorem due to Feller@10# and
Ibragimov and Linnik@11#. More recently, this problem wa
reconsidered by Chavanis and Sire@6,7# and Chavanis@9#
who extended the methods introduced by Chandrasekhar
von Neumann@12# in their investigations on the fluctuation
of the gravitational field. In the stellar context, the limit di
tribution is a particular Le´vy law, called the Holtzmark dis-
tribution. In the vortex context, the velocity PDF is given b

W~V!5
4

ng2 ln N
expS 2

4p

ng2ln N
V2D @V&Vcrit~N!#,

~2!

W~V!;
ng2

4p2V4
@V*Vcrit~N!#, ~3!

where
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-
n
-

-

nd

Vcrit~N!;S ng2

4p
ln ND 1/2

ln1/2~ ln N!. ~4!

This distribution is obtained in the ‘‘thermodynamical’’ limi
N,R→1` with n5N/pR2 finite ~we have assumed for sim
plicity that the vortices are uniformly distributed on averag
see Refs.@2,8,9# for a generalization of these results to th
case of an inhomogeneous medium!. In fact, this limit is not
well defined and the velocity PDF is ‘‘polluted’’ by logarith
mic corrections. Therefore, in Eqs.~2!, ~3!, and~4! we must
consider thatN→1`, but not lnN. This is appropriate to
physical situations in which the typical number of point vo
tices does not exceed 104. Since this distribution is interme
diate between Gaussian and Le´vy laws we proposed to call i
a ‘‘marginal Gaussian distribution’’@7#. In the ~formal! limit
ln N→1`, the tail is rejected to infinity and the limit distri
bution is Gaussian@10,11#. However, the convergence is ver
slow so that, in physical situations, the algebraic tail
clearly visible@1–3#.

From the distribution~2!, ~3!, and ~4! we can easily cal-
culate the average value of the modulus of the velocity.
leading order in lnN, we find

^uVu&5S ng2

16
ln ND 1/2

. ~5!

It should be noted that the moduli of the velocity arenot
statistically additive in the sense that

^uVu&Þ(
i 51

N

^uFi u&. ~6!

This is clear at first sight since the right-hand side of Eq.~6!
divergeslinearly with the size of the domain. It is therefor
of interest to calculate the average contribution^DuVu(R)& to
the modulus of the velocity exerted by vortices located in
annulus of radiusR and thicknessDR. A similar quantity was
calculated by Agekyan@13# in the astrophysical context~see
also Kandrup@14# for a generalization of his results to a
inhomogenous medium! and it is possible to extend hi
©2002 The American Physical Society02-1
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method to the case of point vortices. As we shall see, i
possible to derive an explicit expression for this quantity
terms of Bessel functions.

Following Agekyan’s method, we proceed in three ste
We first determine the average velocity^uV* (R)u& due to all
vortices, except those that lie in the annulusDR, assuming
that there areN vortices insideR. Then we average this quan
tity with respect toN. Finally, we subtract this average
quantity from the average velocitŷuVu& due to all vortices.
Our presentation closely follows the one adopted by K
drup @14# in his review on the stochastic gravitational flu
tuations.

Suppose there areN vortices insideR andN1 betweenR
1DR and R1. The probability that these vortices exert
velocity V* in O can be obtained by applying Markov
method outlined in Ref.@6#. We start from the formula

WN,N1
~V* !5E )

i
t~r i !d

2r idS V2(
k

FkD , ~7!

wheret(r i)d
2r i governs the probability of occurence of th

i th point vortex at positionr i , and we express thed function
in terms of its Fourier transform

d~x!5
1

~2p!2E e2 i r•xd2r. ~8!

Then,

WN,N1
~V* !5

1

4p2E AN,N1
* ~r!e2 i r•Vd2r, ~9!

with

AN,N1
* ~r!5E )

i
t~r i !d

2r ie
i r•(kFk. ~10!

Let i 51, . . . ,N label the vortices in the disk of radiusR @re-
gion ~I!# and i 5N11, . . . ,N1 label the vortices betweenR
1DR andR1 @region~II !#. If the vortices are uniformly dis-
tributed in average, thent (I)51/pR2 and t (II) 51/p@R1

2

2(R1DR)2#. We can write therefore,

AN,N1
* ~r!5S E

ur u50

R

t (I)e
i r•Fd2r D N

3S 12E
ur u5R1DR

R1
t (II) ~12ei r•F!d2r D N1

,

~11!

where

F52
g

2p

r'

r 2
. ~12!

In the limit R1 ,N1→` with n5N1 /pR1
2 fixed ~and treat-

ing lnN1 as a constant!, we get
05630
is

.
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WN~V* !5
1

4p2E AN* ~r!e2 i r•Vd2r, ~13!

with

AN* ~r!5S E
ur u50

R 1

pR2
ei r•Fd2r D N

3expH 2nE
ur u5R1DR

R1
~12ei r•F!d2r J . ~14!

Let P(N) denote the probability of findingN vortices in the
disk of radiusR. Since the vortices are randomly distribute
with a uniform distribution in average,P(N) is given by the
Poisson distribution

P~N!5~npR2!N
e2npR2

N!
, ~15!

where n is the average density of vortices. Averaging t
quantity ~14! with respect to the Poisson distribution~15!,
we obtain

A* ~r!5(
N

P~N!AN* ~r!

5expH 2nE
ur u5R1DR

R1
~12ei r•F!d2r J

3e2npR2

(
N50

1`
1

N! S Eur u50

R

nei r•Fd2r D N

5e2nC(r)expH nE
ur u5R

R1DR

~12ei r•F!d2r J , ~16!

where

C~r!5E
ur u50

R1
~12ei r•F!d2r . ~17!

The functionC(r) has been calculated in Ref.@6#. To sim-
plify the integral appearing in Eq.~16!, we find it convenient
to takeF as a variable of integration instead ofr ~see Ref.
@6# for more detail!. Transforming to polar coordinates, ca
rying out the angular integration, and taking the limitDR
→0, we obtain

A* ~r!5e2nC(r)H 112pnRDRF12J0S gr

2pRD G J , ~18!

where J0 is the Bessel function of zeroth order. Equatio
~13!, without the subscriptN, and Eq.~18! determine the
distribution of the velocity fluctuations occuring inO due to
all the vortices except those located betweenR andR1DR.
If we denote by

^DuV~R!u&5^uVu&2^uV* u&, ~19!
2-2
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the average velocity due to the vortices located in the an
lus of radiusR and thicknessDR, we have

^DuV~R!u&52
1

4p2E e2 i r•Ve2nC(r)2pnRDR

3F12J0S gr

2pRD GVd2Vd2r. ~20!

Transforming to polar coordinates and carrying out the
gular integrations, we can rewrite the foregoing expressio
the form

^DuV~R!u&522pnRDRE
0

1`

VdV

3E
0

1`

rVJ0~rV!g~r!dr, ~21!

with

g~r!5F12J0S gr

2pRD Ge2nC(r). ~22!

Under this form, it is not possible to interchange the order
integrations. However, using the identity

xJ0~x!5
d

dx
@xJ1~x!#, ~23!

and integrating by parts, we obtain

^DuV~R!u&52pnRDRE
0

1`

dVE
0

1`

VJ1~rV!h~r!dr,

~24!

with

h~r!5rg8~r!. ~25!

Integrating by parts one more time with the identity

J08~x!52J1~x!, ~26!

we find

^DuV~R!u&52pnRDRE
0

1`

dVE
0

1`

J0~rV!h8~r!dr.

~27!

It is now possible to interchange the order of integratio
Using the identity

E
0

1`

J0~x!dx51, ~28!
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we get

^DuV~R!u&52pnRDRE
0

1`h8~r!

r
dr. ~29!

Straightforward integrations by part lead to the equival
expression

^DuV~R!u&52pnRDRE
0

1`g~r!

r2
dr. ~30!

Therefore, the average value of the velocity created by
point vortices located in the annulus betweenR and R
1DR is given by

^DuV~R!u&52pnRDRE
0

1`F12J0S gr

2pRD Ge2nC(r)
dr

r2
.

~31!

The exact expression forC(r), calculated in Ref.@6#, is
relatively complicated. However, for our purpose, it is suf
cient to consider its approximate expression

C~r!5
g2

16p
ln N1r2. ~32!

With the change of variablesx5gr/2pR, we can rewrite Eq.
~31! in the form

^DuV~R!u&5ngDRE
0

1`

@12J0~x!#

3expS 2
n

4
pR2 ln N1x2Ddx

x2
. ~33!

It turns out that this integral can be expressed in terms
modified Bessel functions. Indeed,

^DuV~R!u&5ngDRH 2Apa1
1

4 S p

a D 1/2

e21/8a

3F ~114a!I 0S 1

8aD1I 1S 1

8aD G J , ~34!

with

a[
n

4
pR2 ln N1 . ~35!

For R→0, this expression reduces to

^DuV~R!u&5ngDR. ~36!

This formula would be expected to be general if the mod
of the velocity were additive. Indeed, in that case
2-3
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^DuVu&25n2pRDR
g

2pR
5ngDR. ~37!

However, the moduli of the velocity arenot additive and Eq.
~36! does not hold for large values ofR. Indeed, forR
→1`,

^DuV~R!u&5
g

4 S n

ln N1
D 1/2DR

R
. ~38!

It is seen that ‘‘cooperative’’ effects modify the expression
the average velocity that we would expect on the basis
naive arguments. In view of the asymptotic behaviors~36!
and ~38!, a simple approximate expression for the avera
velocity is given by

^DuV~R!u&5
^DuVu&2

11R/L
, ~39!

whereL is a characteristic length defined by

L5
1

~16n ln N1!1/2
. ~40!

This formula shows that the velocity is ‘‘shielded’’ on
typical distance;L, the intervortex distance. Therefore, e
erything happensas if the velocity were additive but tha
each vortex produced an ‘‘effective’’ velocity

Ve f f5
g

2pR

1

11R/L
. ~41!

For R@L, the ‘‘effective’’ velocity decays likeR22 instead
of the usual behaviorR21 recovered forR!L ~see Fig. 1!.

These results confirm our previous observation@6,9# that
the velocity fluctuations occuring inO are dominated by the
contribution of the nearest neighbor. In fact, this dominan
is marginal since the average velocity diverges logarith
cally with the size of the domain

^uVu&5E
0

1` ng

11R/L
dR;gn1/2~ ln R1!1/2. ~42!

Therefore, equal logarithmic intervals contribute equally
the velocity. In other words, the contribution from vortic
betweenR andR/2, R/2, andR/4 and so forth are of equa
importance. Therefore, the contribution of the nearest ne
id

05630
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bor ~at a typical distance;n21/2 from the point under con-
sideration! Vn.n;gn1/2 is of the same order, up to a logarith
mic factor, as the contribution of the rest of the system.In a
sense, we can say that the velocity~42! is dominated by the
contribution of the nearest neighbor and that collective
fects are responsible for logarithmic corrections. As d
scribed in Ref.@6#, this particular circumstance arises b
cause we are just at the separation between Gaussian
Lévy laws.

The results obtained in this paper and in Refs.@1–8# can
have applications in the context of decaying two-dimensio
turbulence when the flow becomes dominated by a la
number of coherent vortices. They have been used explic
by Sire and Chavanis@15# to build up effective two- and
three-body dynamics of vortices subjected to the ‘‘nois
induced by the rest of the system. They are also of gr
importance to build up a rational kinetic theory of point vo
tices in two-dimensional~2D! hydrodynamics@9#. On a for-
mal point of view, they complete the analogy between
vortices and stellar systems investigated in Refs.@16,17#.
They can also be relevant for other fields of physics such
non-neutral plasmas under a strong magnetic field@8# and
parallel straight dislocation systems@18#.

I acknowledge interesting discussions with C. Sire on t
topic.

FIG. 1. Plot of the effective velocity normalized by the physic
velocity V5g/2pR versus the normalized distanceR/L. The ‘‘ef-
fective’’ velocity is defined byVe f f5^DuV(R)u&/2pnRDR. The
solid curve corresponds to the exact formula deduced from Eq.~34!
and the dashed line to the approximate formula~41!.
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